Tag Archives: tray puzzle

Halloween Woodworking

An inspiration from one of the You Tube woodworkers: Mitch Peacock’s Hallowood 15 challenge. We haven’t risen to the level where we are confident to take on You Tube challenges yet; maybe next year. But perhaps we can participate through a blog post.
We are still learning how to use some of this new technology, so we set out to see if we could make another tray puzzle, this time with a Halloween theme.

My wife drew a jack-o-lantern outline for me to vectorize and input to the laser software, so I could try cutting out a puzzle with a Full Spectrum laser. My ineptitude in dealing with all the software left me high and dry. I could get the drawing scanned and saved in an XPS format, but when I pulled it into the software all I could do was get a raster file, which I could use to burn an image on the wood but not cut the wood. Evidently you need to use drawing software that lets you save your file in a vector format. So I used the drawing software that came with the laser, albeit pretty simple, and I was able to hammer out what looks like a jack-o-lantern outline with lines added for the puzzle cutouts. My wife can then add embellishments to make it look like a real jack-o-lantern.

A little history to equate this project to the past:
According to the History.com website

“The practice of decorating jack-o’-lanterns [the name comes from an Irish folktale about a man named Stingy Jack] originated in Ireland, where large turnips and potatoes served as an early canvas. Irish immigrants brought the tradition to America, home of the pumpkin, and it became an integral part of Halloween festivities.”

The History.com website has the story of “Stingy Jack” and many other great current and historical content related to Halloween including a video by a master pumpkin carver. The carving of these jack-o-lanterns thus finds its beginnings in Ireland and Britain in the early 19th century. Lighted gourds may date back over 700 years, but not as a Halloween practice.

So here was the procedure for making the Hallowood puzzle:

• Produce a drawing using a vector format. I used the drawing software that came with the laser engraver. It didn’t give us a lot of avenues for creativity, so the pumpkin is pretty simple. My wife embellished it, which made up for the simplicity.

pumpkin drawing

• Laser cut the pattern. I used 7 passes for a laser setting which was perfect for cutting through the 1/8 inch hobby plywood piece. The pattern was about 8 inches by 8 inches. If I had a better grasp of drawing this pattern I would not have cut out each tooth separately. The teeth were too small to be effective puzzle pieces. We left out the teeth and my wife ultimately painted a yellow background on the tray surface. The laser produces such a fine cut that the puzzle pieces fit very tightly in the tray. I had to do some sanding to loosen them up a little.

• Remove the puzzle pieces from the frame and lightly sand the pieces. Cut the frame to size and cut another piece of 1/8 inch plywood to form the back of the tray. Glue the tray back on the frame. Round over the corners, sand and apply a sanding sealer, in this case spray lacquer. Apply a sanding sealer to the puzzle pieces.

• Put the puzzle together and paint. This was the tricky part. The triangles for the eyes and nose were not exactly the same; another result of not knowing what I was doing when I drew the puzzle in the vector format. So once the pieces were arranged properly, my wife came up with a way to paint the pieces so their orientation would be obvious.

• Sign, date and apply a clear coat and give it to some deserving child of appropriate age.

tray puzzle Hallowood 15 craftsbyjennyskip.com
tray puzzle ready to put together
wooden puzzle Hallowood 15 Challenge craftsbyjennyskip.com
painted puzzle


I’ve been making jigsaw puzzles for over 20 years, first for my children and now for grandchildren. The tools I use include scroll saws and bandsaws. The first puzzles I made were tray puzzles. Sometimes I traced my children’s hands on a piece of 1/8 inch thick Baltic plywood. I would then cut out the traced hands and separate the fingers from the palms. The hand shapes were cut from a square piece of the plywood, which then became a fitted frame for the hands. This frame was subsequently glued onto another square piece of 1/8 inch thick plywood to back up the frame and produce a tray to hold the puzzle pieces. I would then paint each finger a different color, as well as the palm pieces. I would then pick out a lighter color to paint the parts of the tray. Then using rub-on or vinyl letters, I would put numbers 1 thru 10 in each tray opening for the fingers. On the corresponding finger puzzle piece I spelled out the numbers: one, two, etc.
The pieces were then top coated with lacquer. All the paints were toy grade and non-toxic. However, note that the size of these pieces would pose a choking hazard for small children. ASTM F963 gives the standards governing children’s toys. As an example, a toy part must not be of a size to pass through a 1.68-inch diameter hole in a jig that is 1.18 inches thick. 

Now when I first made these puzzles, I had no knowledge of these standards and after all, the puzzles were for my children, and not for sale! But I don’t think the children’s mother would look favorably toward having my toys choke the children. As luck would have it, my children were old enough at the time to safely handle the puzzles I made. Another popular tray puzzle I made was a segmented, multicolored caterpillar. The caterpillar was divided into 26 pieces. Each piece was labeled with a capital alphabet letter. Under the corresponding piece the tray was labeled with the lower case letter. Since then, many other puzzles have found their way from my scroll saw to the hands of my grandchildren: free standing puzzles, interlocking puzzles and more tray puzzles. My wife has provided the artwork in many cases, while I cut it into irregular interlocking pieces, to confuse the innocent.
I found over time that not only was the size of the puzzle piece a function of the child’s age but the number of puzzle parts was also a function of age. The table below is a general recommendation for the number of puzzle parts.

• Ages 2 – 3          4 to 12 Pieces
• Ages 3 – 5          12 to 50 Pieces
• Ages 5 – 6          50 to 100 Pieces
• Ages 6 – 7          100 to 200 Pieces
• Ages 7 – 8          200 Pieces
• Ages 8 – 10        300 Pieces
• Ages 12+           500+ Pieces

Wikipedia describes the history of puzzles:

“A jigsaw puzzle is a tiling puzzle that requires the assembly of often oddly shaped interlocking and tessellating pieces. Each piece usually has a small part of a picture on it; when complete, a jigsaw puzzle produces a complete picture. In some cases more advanced types have appeared on the market, such as spherical jigsaws and puzzles showing optical illusions.”

In addition, newer puzzles can be spherical and 3-dimensional. Wikipedia continues…

“Jigsaw puzzles were originally created by painting a picture on a flat, rectangular piece of wood, and then cutting that picture into small pieces with a jigsaw, hence the name. Alternatively, it has been believed that the name of the puzzle may have given the tool its name. The origin of the name Jigsaw is not entirely known. Some speculate that upon completion of some difficult puzzles, the player would then perform a victory jig upon the puzzle. Performing this jig on the puzzle would check the structural integrity of the puzzle. Once the jig was observed upon the puzzle, the person who saw the jig would confirm that the structure was sound, hence jigsaw. This origin has little evidence to back its story and is based merely on interesting hearsay. The John Spilsbury, a London cartographer and engraver, is credited with commercializing jigsaw puzzles around 1760.[1] Jigsaw puzzles have since come to be made primarily of cardboard.”

I’ve been specifically inspired by Hans Meier who is a member of the Gwinnett Woodworkers Association and who has several You Tube videos on scroll saw puzzles. I highly recommend his videos for detailed techniques on making a variety of puzzle types.

The project chosen for this blog post is a tray puzzle for one of our 5 year old grandchildren. He loves birds, fish and animals, so we chose a parrot. And even though he has worked puzzles we have made with 48 pieces, this picture lends itself to 12 pieces which is on the lower end of the recommended number for a 5 year old.
My wife, the artistic one of our blog team, sketched a parrot which I was able to divide into 12 puzzle pieces. This sketch was subsequently mounted on a 1/8 inch thick piece of Baltic plywood.

The parrot tray puzzle was a 13 step process:
1 Select a puzzle subject. In this case the grandchild dictated the subject matter.
2 Sketch an outline of the puzzle subject, a parrot. My wife sketched the parrot and selected the colors. The sketch is then divided up into the required number of puzzle pieces attempting to select areas of the figures that will either make it easy or difficult to solve the puzzle. It’s important to consider the size of the pieces.

puzzle sketch jenny skip
prepping the sketch
3 Use contact spray cement to attach the sketch to a suitably sized piece of 1/8inch thick plywood.

puzzle jenny skip.com
sketch mounted on plywood
4 Drill a starter hole in the sketch with a 1/16 inch diameter drill bit. Think about this location. The object is to be able to completely cut out the whole figure from the board, leaving the remainder of the board as the frame for the puzzle.
5 Using a number 0 46 TPI spiral scroll saw blade, the outline of the subject (in this case the outline of the parrot) is cut out.

scroll saw blade jenny skip.com
scroll saw blade
6 Once the subject has been removed from the frame portion of the board, the subject is cut into pieces. For the parrot puzzle, 12 pieces were selected. The body parts of the parrot were selected to be parts of the puzzle. Several miscellaneous cuts were included to add some challenge to solving the puzzle.

puzzle craftsbyjennyskip.com
cutting out the puzzle pieces
7 Use mineral spirits or a heat gun to remove the paper sketched pattern from the frame and puzzle pieces.
8 Lightly sand the frame and puzzle pieces.
9 Cut another 1/8 inch thick piece of plywood that will form the back of the puzzle (i.e. the bottom of the tray). Lightly sand this board.
10 Glue the tray bottom to the bottom of the frame.
11 Apply a sanding sealer to all the puzzle and tray parts and lightly sand with 320 grit sandpaper.
12 Paint the puzzle with toy safe acrylic paint and apply a clear top coat of lacquer.

13 Mail puzzle to subject grandchild and wait for kudos!!

craftsbyjennyskip.com parrot puzzle
parrot puzzle (with Grayzie the cat in background)